
A D- A174 ?39 CONTINUITY OF 
GAUSSIAN PROCESSES(U) 

NORTH CAROLINA 
U N V 1 '1

AT CHAPEL HILL DEPT OF STATISTICS G SANORODNITSKY
AUG 86 TR-149 RFOSR-TR-86-2643 F49620-85-C-6144

UNCLASSIFIED FG 121 NL

EEEEEEEEEEE



4

f 
a

I.

'a

V

'4,

~ 1.0 t~
L 132* 
L 136 IIJII~

.1
4. I _4. I .1 LL fl20
4. 

I

LIP'F, 1J II 1.25 ~ JQ 1.6

4.
sq

4

N

~ ~ ~ ~ :71 CHART

.4 

4
S. 

A

I

'S

1.'-

~4
S. 

.4.

'S 

-V.

V..'S

-4

'V.
-'.4
F 

I,
.4

S. 
. 4 4 4 - 4 4 *4**\%'..... 

445 ~'4'Y.'.t~%tAk'..w.
.4k.- - 44 44~~.~...{t:kkjzkkk:k~&&;S ; %&%s{.. ssc~v ,c * %cy~-N'cvNs~~SL-...



00
M~' KFOGR-TR. 86- 2 04 3

CENTER FOR STOCHASTIC PROCESSES

Department of Statistics
University of North Carolina
Chapel Hill, North Carolina

14 'M 0

to~

'1-

0 0 H

F-" L TE

DES

Technical ReotNo 4

~ -7



UNCLASSI FIED

SECURITY CLASSIFICATION OF THIS PAGE A /D ~fr 7 4/~ 7 43 1
REPORT DOCUMENTATION PAGE

I&. REPORT SECURITY CLASSI F ICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED ________________________

2&. SECU.RITY CLASSIFICATION AUTHORITY 3 ITBTON/AVAILABILITY OF REPORT
pprov~ed0 for Public Release; DistributionNAUniie

2b. OECLASSIFICATIONOOwNGRADING SCHEDULEUnite

NA _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

Technical Repor~i~ _ _ _ ft-(MRTR. ra 2 A45
G&. NAME OF PERFORMING ORGANIZATION b.OFFICE SYMBOL 74. NAME OF MONI1TORING OFIGANIZAT ION

University of North Carolina (if applicable) AFOSR/NM
&C. ADDRIESS (City. State and ZIP Coda, 7b. ADORESS (City. State and ZIP Code)

Center for Stochastic Processes, Statistics Bldg. 410
* Department, Phillips Hall 039-A, Boiling AFB, DC 20332-6448

Chapel Hill, NC 27514
Seb. NAME OF FUNDING/S1PONSORING 1gb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NME

ORGAIZAION(it aepdicable)

~IF~~ZAOF49620 85 C 0144
Sc. ADDRIESS (City. Stat. and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNITBldg. 410 ELEMENT NO. NO. NO. NO.Bolling AFB, DC . 6.1102F 230445
11. TITLE (Include Security Claaufcataoni

Continuity of Gaussian processes
12. PERSONAL. AUTHORIS)

* Samorodnitsky, G.
13&. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. M.. Day) 15. PAGE COUNT

technical preprint FROM 9/9 TO.L.... August 1986 22
16. SUPPLEMENTARY NOTATION

17. C-OSATI CODES 18. SUBJECT TERMS (Contnue. on wreverse ineceseaI7 and Idmntify by block numbr)
FIELD G-RvOUP SU. GA. Keywords: Gaussian processes, sample continuity, local

xxxx~~xxxx(Xxxcontinuity, isonormal process, metric entropy.

I I

19. ABSTRACT (Contianu~e on revers it necessary and identafy by block numberl

We give sufficient conditions for local continuity of the isonormal process

L at some point of its parameter set. Since a Gaussian process, defined on a

compact parameter space, that is a.s. continuous at each point is sample continuous,

our result can be applied to the problem of general sample continuity of

Gaussian processes. It is shown that our sufficient conditions are strictly weaker

than the classical sufficient conditions for sample continuity.

20. DISTRIBUTIONiAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCI.ASFIE/UNLIMITE X SAME AS AIPT.Z OTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER c2Q22c. OFFICE SYMBOL

P EI~t- h Cy-vJ ('A99'%L-^--15 L AFOSR/NM

DO FORM 1473,83 APR SOITION OF I jAN 73 IS OSSOLE"! UNCLASSIFIE'
~ .. s S.. .



CONTINUITY OF GAUSSIAN PROCESSES

by

Gennady Samorodnitsky
1

Faculty of Industrial Engineering

& Management, Technion--Israel

Institute of Technology

and

Center for Stochastic Processes

Department of Statistics

University of North Carolina at Chapel Hill

Abstract

We-givetsufficient conditions for local continuity of the isonormal process

L at some point of its parameter set. Since a Gaussian process, defined on a

compact parameter space, that is a.s. continuous at each point is sample continu-

ous, our result can be applied to the problem of general sample continuity of

Gaussian processes. It is shown that .ou sufficient conditions are strictly weak-

er than the classical sufficient conditions for sample continuity.

AMS 1980 Subject Classification: 60G15, 60G17, 60G60.

Keywords and Phrases: Gaussian processes, sample continuity, local continuity,

isonormal process, metric entropy.

IResearch supported in part by the Fund for the Promotion of Research at the

Technion under Contract 190-678, the Weizman Foundation while visiting the
Center for Stochastic Processes, Chapel Hill, North Carolina, and the Air Force
Office of Scientific Research Grant No. F49620 85 C 0144.

DTIC
Lri GTEF_S DEC 4 1986

B

I Naa.e%'
ie ie m .7''N.



1. Introduction

Let {X(t), tE } be a Gaussian process with a continuous covariance function

over a compact subset C of a metric space (S,d). Such a process is called sample-

continuous if there is a version of the process with continuous sample func-

tions. Equivalently, {X(t), t4EC} is sample-continuous if it is uniformly con-

tinuous for t restricted to a countable dense subset of C. The process is said

to be sample-bounded if it has a version with bounded sample functions.

Let t0 be a point of C. The process is said to be continuous at tO if there

is a version of the process with sample functions that are continuous at t0.
'.o,

Equivalently, the process is continuous at t0 if P(lim Xt = Xt0) =1, C* being a

tEC*

countable dense subset of C.

Let H be a real, infinite-dimensional Hilbert space. A linear map L from

H into real Gaussian variables with ELxf 0, ELxLy = (x,y) for all x,y E H is

called the isonormal Gaussian process on H. (As usual, (-,') denotes the inner

product in H).

A modern approach to the study of sample function continuity and boundedness

of Gaussian processes reduces this problem to the study of those sets Cc H on .

which the isonormal L has continuous or bounded sample functions, called QC-sets

and GB-sets respectively (Dudley (1967, 1973), Feldman (1971), Sudakov (1969,

1971)). This approach relates GC and GB properties to a certain measure of the

size of a set C in H, called metric entropy.

Let C be a subset of a metric space (S,d). Given E> 0, let N(C,E) N (E)

be the minimal number of points xl,x 2 ,..., x from C such that for any yE C~n

there is an xi such that d(xiy) !5s. Then HC(C) =tnN (c) is called the metric

entropy of C, and the exponent of entropy r(C) is defined by

*f*

wo =A



2,..'

%nH (E)
r(C) - lim -

Dudley (1973) proved that Cc H is always a GC-set if

(1.1) fHc(x) 1dx < <

This is an extremely sharp result, for it implies that C is a GC-set if r(C)< 2,

and it is known that C cannot be a GB-set (and so not a GC-set) if r(C)> 2

(Sudakov (1969)). The case r(C)= 2 includes an ambiguous range, however, where

HC(E) cannot determine whether C is GB or GC (Dudley (1973)). In particular,

there are GC-sets for which the integral (1.1) diverges.

In this paper we find conditions under which the isonormal process L on

a set CcH is a.s. continuous at some point x0 EC. This is closely related to

the question of whether or not C is GC. Clearly, if C is GC, then the isonormal

process is a.s. continuous at each point of C. Less evident is the converse

statement: if the isonormal process is a.s. continuous at every point of C,

then C is a GC-set. This important property of Gaussian processes was noted

for Gaussian processes on [0,1] by Marcus and Shepp (1971), page 436, who give

credit for the idea to R. Dudley, and can be extended as follows.

THEOREM 1. 1.

Let C be a compact subset of a metric space (S,d), and X(t) a Gaussian pro-

cess on C. If X(t) is a.s. continuous at each point of C then it is sample con-

tinuous.

The proof of Theorem 1.1 will be given in the Appendix at the end of the

paper.

In the following section we give sufficient conditions for local continuity

of the isonormal process. These conditions turn out to be strictly weaker than

. .%

%. %
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those obtainable from (1.1). Consequently, our result (Theorem 2.1) can be

used to establish the GC property in situations in which the integral (1.1) di-

verges.

I am deeply indebted to Robert Adler and Stamatis Cambanis for their

valuable remarks during the preparation of this paper.

V1"'

*11

'..



4

2. Sufficient conditions for local continuity

We start with some additional definitions and preliminary results.

For a given set C in a Hilbert space H and a given point x 0 E C, set

(2.1) C (6) := {x-E C : Ijx-xI -<6}, 6>0.

(2.2) N X(6,C) := N(C x(6),E), 6>0, E>0.

(2.3) NXo0(6612,) := N(Cxo(62)nC x0(6 1 ),), 62>61>0, s>0.

A set C is said to satisfy condition A if

I jjxlll - ilX2111I
(2.4) sup 1 xlII2I = M < Co.(2,x2 cc 11x 1 -x 2 112

The isonormal process L restricted to such set C, satisfies the following

bound, which is derived in Samorodnitsky (1986).
2

00

(2. 5) P {sup Lx > X0 + j F 5 } -< C 1). 1 e 2

xEC Jl /2

2

+ Le 2. 1 Nc(Ek)exp{ - -"(*Xk 2
/2-7r 0 k=2 2k-I k 0

for any positive sequences { } 00 ~ ' {x 0 -0 as ji-', satisfying the

following conditions for all k-> 2.

(2.6) xk-I >-l,

(Xk- I

0 k

Here

(2.8) 0* := 2o"+1 C
k 2a k-I

and

a := suplixil, I -infIlxI > 0
xEC XEC

.".
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The proof of Theorem 2.1 is based on the bound (2.5).

Remark 2.1. The following property of metric entropy is used in the sequel.

For any C:cC 2 , any E>O

(2.9) NC (E) 5 NC2)

This relation is semi-evident; details can be found in Samorodnitsky (1986).

THEOREM 2.1.

Suppose there exists a function H(s,t) such that the following two condi-

tions hold

(2.10) ZnNx0(Sigs2'E) !5 H(61.1) 

for any e >O, any 0 < 61 < 6 O, e is a fixed constant.

5 2

(2.11) lim JH(s,t) /2dt = 0.
s-O 0

Then the isonormal process L restricted to C is continuous at x 0 *

Remark 2.2. An alternative sufficient condition for continuity of the isonormal

process at x0 that follows directly from (1.1) is

1

(2.12) fHCx(6)(t) dt < -o for all 6 >0 small enough.

It is easily seen that the condition given by Theorem 2.1 is strictly weaker .

than (2.12). (Suppose that (2.12) holds for all 6:<6. Then take

H(s,t) := ZnNx(SO, Then (2.10) holds via (2.9), while (2.12) and (2.9)
x 0 2

together imply (2.11). The examples given in the end of this section represent

situations in which Theorem 2.1 works while (2.12) fails.)

%.."
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Proof of the theorem.

Note that 11(s,t) tnN (s ,e,- ) also possesses properties (2.10) and (2.11).X0 2

Consequently we may and will assume that H(s,t) is nonincreasing in t for each

s. Fix O< u<lI and define

(2.13) H (s,t) :=H(,,ut

(2.14) H1(s,t) H Hst)1 + Iftnsl + tnItntI

2 /2 /2 1 /2
0

These functions still possess properties (2.11) and (at least for small t)

(2.10). Set

51/2
(2.16) I(s) :=fH (s,t) dt

0
and

*(2.17) g(s) :=[SUP{I(u)+ I(u)' 2}12.
u!5s

Then g(s) +0 as s -0. We are going to show that for an appropriate version

of the process

(2.18) 1isp x~ E Cx xE (S)1 a. s.

* This implies, of course, that the isonormal process L restricted to C is con-

tinuous at x0 As the supremum in (2.18) is taken over a decreasing family

of sets, it is enough to prove that for any a> 0

ILx -Lx0 I
(2.19) limp [Sup{ g jxx I 00XECX(6)}>l1+] 0.

i
Set 6 :=6u , i= 0,1,2,......Then 6 +0 as i-~ Consequently the mono-

tonicity of g(s) implies that
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(2.2) PIU{I LX - L0 I-XC(6}la
(2.20) P~supg(Ilx _ X011) :x 0 x(5}>le

0 Lx- Lx0

I P(sup{ xIxex0  :x Cx(6 1 ) ( Cx(i+l) > I+a]

-<i= PIsup{ILx-Lx0 1 :x E Cx (6)iC (5 i+l)}> (l+ag(6 i+)].

= 0 0

We are going to estimate the probabilities in the last sum in (2.20). Denote

4 ~ ~~C i := [x -x09 xE C x0 (6 1) n C x0 (6i+l )I.

We obtain by the linearity of the isonormal process that

(2.21) P[sup{ILx-Lx0I : xE C x(6 1 ) n Cx0(6i+1)I> (l+a)g(6 1 +l)]

= P{sup JLxi > (l+a)g(6i+l

XEC

We would like to apply the bound (2.5) to the last probability on (2.21).

However, C may not satisfy condition A, thus we first define

6
C :- x EC}.

Clearly,

suF ILxl = sup [ILxH--} _ sup lLxI.

XEi XEC 1  7X XEC C

Thus
(2.22) P{su ILx I > (l+a)g(6 -g P{sup I LxI > (1+)g( )g( )}

XEL XEC 1

Moreover, the points in C have equal norms (6 and so C satisfies condition
i i i

A with M= 0. We apply the bound (2.5) to Ci, taking a=a= 619 M= 0. For any

(1) 0 (1)
two sequences { i fA Ij=O satisfying (2.6) and (2.7) we thus obtain

j j%' j =



P

8

(2.23) P{su iLx )6+ 6(il(i)}</ - (X(i ) 1exp{- INC (C('))

j=2C

+" ^0 ep, gt 0  N (£ ep-2 l-O±)2
+4~j--p{ ~j ) 2 ci )iI j

Note that for any X E,X2 E C i

6. 2 X 2 x2 x2
1 1VT1H6,111

1xi x7 -x '2. rl x2 11x 1 -H 1 +

I_ IxT Tx

1T*

26 26 _

!5T-FxV f- x_ II <61 i- 11 x1 x 2 11

Consequently for any e> 0

(2.24) Ni (c) -< N (E- N)N(C (6N C (6 ) )
C C1 x0 x01+1 2

Thus, (2.23) can be rewritten as

(2.25) P{sup ILxi >X(i)6i + I ) ) 
M

x cj=lj i I.

12-12 12.!511-p- W I)N (6 6 1 )
* T'~ x0 1+1' V' 2

+ 0X (i)-lexp {- 2X(i)} I N (6 6+' exp
( 2 VV22J-1-

' '-,€ ". 4"". ."" , """ " L ', . ":" ; :" " '' " "" "" "" "" ° """"".2 ' .- J.2 .---. "-
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S() (i)
%where X(i) denotes X'. Now we specify the C. and X. sequences. Set

0J

g(6 )(2.26) x(i) i+l
06

(22)£(i) .Bl2- j
(2.27) B 2 j=1,2,...,

2/
x~i)

(6 2 6
(2.2) 2 1+1' 1+1

2 - 1/2
-' H (6 2 6 )

2 1+1' i+l

for some positive constants B IB to be specified later in order to meet

2_(J~l) /2 > B 2B2H2 ( i~l ' ' 2~

certain conditions. Note that g(s) s Itns consequently, at least for

small values of 6, X(i)I for all i and j. Furthermore, the condition

MJ

holds for all i 0, j :2 if and only ifj Xi

(2.29) 2 > B1%4.

The second part of condition (2.7), namely <1 becomes, after a sub-

stitution

.%"" " 1 ' /2 d u ] i

2 (6 i+1216 I _
(2.30) 2>i <' il2

B 2 H2 0 111 2i+l

Note that for any O< d<l1 we have

H2 (t,dt) 1/2 H I(t,dt) + t [fH1 (t,u) /du] /

(2.31) 1/ 0

H t1/2 1ft u)du2
I2 \./ H1 (t,t) 2 +If tu)/dl/

0

d t 1 / 2 1 t /2 /fdtH(tu) /du + {ifH(t ,u) dul
t0 1t01

F t
1{JfH 1 (t, u) /du] /2
t0

< [fH,(t,u)/2 du] 12 + 1 <

0 d
.r -r- -. - -- °. . . " " . C.~ . - . - . , . .. . ".- . ...

,::~~~~...e..... ::.. . -...-.... ,........,:. :.: .:,.5 ..... :.v .-......... ,....v....... . .... -.-..... .:: .- :...*.*. .-..
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where K< - is a constant that does not depend on t and d. Thus, the following

condition

2-(J-2)

> B12-J,B2K I

which is equivalent to

- 4
* (2.32) B B < 4

1 2 K'

implies (2.30) for all i2!0, j2!2. Consequently, if we choose B1 and B2 to

satisfy the restrictions (2.29) and (2.32), the condition (2.7) will be satis-

fied. Furthermore,

(M) M(+ B1B2 00 2-4 1 /2]

X(i)6i)il + E( x 1 2  2-H 2 (6i+i ,  i+l
j=l H2 (6i+l, 2Ii+l ) 1/2 j=l

2-16 i+l /2d

f H2 (i+l'u) du
X(i)6 [1 + 2B B2  0

1 1 2 i+l H2 (6i+l' 2-1i+l)1/2

Here the monotonicity of H2 (s,t) in t has been used. An argument similar to

that in (2.31) yields that for 0<d<l

dt1/
f H2 (t,u) /du

(2.33) 0 
< K

dtH2 (t,dt)/2 d

where K is the same constant as in (2.31), independent of t and d. Consequently
O

X(i) i + x (i)l(i) < X(i)6 (I + 2BIB2K).

If we also choose B and B2 in such a way that

(2.34) 2BB2K

-Z
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then we get

(i)X 6 + I ( i  (l+t)X(i)6 = (l+)g(il)
' 11+1

Consequently, (2.25) implies that

(23) 5A i -lx} (6(2.35) P{suR ILxI > (l+cL)g(6 l)} </i X(i 1 2 }N x (+ 1xE c. 1+ IT x0i i,--f-

-lEC 10. 00(t) u

+ i'A(i) lexp{- A(,) 2 } N (6S x{ (~i .. *~) 2}
IT 2 J=2 x 0 i+1'61' '2)x 2 J-1l

For every fixed i 0,1,2,... let ai and bi be the first and the second terms,

respectively, in the right hand side of (2.35). Then (2.20), (2.21), (2.22) and

(2.35) imply that

JLx - LxoI 0  o
(2.36) P[sup{g(IIX 1X):xECx ( 6 )}>l+] < I a i + I b .

0 i__ i=0

We are going to estimate each of these sums separately. Letting c be a finite

positive constant that may vary from line to line we obtain

S0g(6 ) 2 E(i)u
a, -< c exp{- + InN ,6ioU1

i=2 i2 + 2 Xo 0i+i

OD g(6 i+l) 2  (i) u

!. c +exp{- +H(6l,2
i=0 262

2

g0 i+) (i)
c exp{-- 2 +H 2 (

6i+li ) ) }
i=O 2 6

'OD 
1=

e 1xp{- 2 i - + H2(6 -1l
i2o 2 62 2 1+1 1  1

a .*.
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c I exp{- 2 i + H 2 (6 1 + 1 B2' }
J=0

.2(6 1  
1/2 26 i  ,B 2-6i+1 )

S = C- u 2( i+'- 2' +1' 2 i1i=0 2 i+[1 -+1u= H 2 (6 i+l 1 6 i+I) 1A

for 6 small enough. Note that (2.31) implies that

V
H2 (6 +l B2 -1i+l) 22A

2/ + 1 max{1l-}

H2 (6 1+1 1+ 1 +

while
i2(ill-1l) I -1 2K - 1

61H 2(6,,B,2-1 6+) 1/ u -1max(1,-2K)6  H (6 i+16 2
121+11a+1,B 1i+i12 (+1'i+1

and the last expression converges uniformly in i to zero as 6- 0. Consequently,

for 6 small
O 00 00 00

Ia < c Y exp- u H2 (6 ,6 1 c I eXp{- n61++1) c X l
i== 461 2 1+1 i+l - +=1

c6u 0

1-u

as 6 0. Next we consider the sum Z 0b i. Note that for all j- 2

(2.34)..li_ A'-p*\(i) - Vi)r [2 +1 1i+1) I 
- BI2-J]

J-1 j 2H2 (6i+I , 2-16 i+ )1/2 1

H2  +(J-) 1

-(6 B2 6  B
>BX(i) 2 1+11 1+1 -(J _ I

21+ 1+ 122

1H2(6 1+12 16+)22B2A()H 2 (6 i+l' 2-1 6 i+l 1/ /2"

4t%. r P. ..... . ... .. % .*.*. '.* " -. . " -" . -
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whenever B1 and B2 are chosen to satisfy

B2

(2.38) 2 > 1
B 1- 2

Note that (2.38) implies (2.29). Using (2.37) we get that for small

0. C~ilu I)J N0(6 V~l V i ) exp{- -:(Xj_ - (

OB 2 g(6 i+ ) 2 H 2 (61+1 , 2- )6+ )

22 H2 (6 2-(-)6

1o Bx{ 2 2 1 +1 1i+1 (i+l)J2 exp -  HB 2(6 i+ ,2-1 6 i+ )  
1 i

2. 2 i B

.4 2 +l 2 8 6 2
I H2 6ii,

00 B 6+,2-(J - 1 ) 6
2 2(61+1 '/2) (6 /

SXexp{- H 0-l

J8286 " H2 (6i+1,2-1 i+l ) +

4K2u2 H 2 (6 i 2 6 )

( 2u max(, ) 2 (+ i+l) 5

B BB H (6 )

00 B 6/-J1) /

2 1+1 1+1

8r 2 u 2( 2I6 +19 /2 " H 2 '/2

6u, 2 - 1 + 66  -

x I -6- m a x ( l , 4 )  ( 6 l ) 1/2 " 2 1H 2 + 1 9 2 -I 1 + I ) / ]

*~~ ~ x{~- 1 2 i+1'i

x~ ----l - -... -a(1K 2 -+ -+ -6

BEu BI  2(1+1, 1+

.. .. . -. . .- '. .-- ,. .- ,. - . . '-'e x. . ..- ) . . . .- -. .• .. .-.-.-.- ..- ,--., .-.. . .. ,- ., .-. .- . ., . .-
.,- .'.-'..7. ". ,-" -'-." " " " • . . . '.: - - " " " "-"."",""-""- -'"."-" ," ." '- "- "- "-' " - ." -" -. H. (6-.","i-"-" .-- " -"."H,-6
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B2 u H(2  2- /2

< exp{- 2- I 2 1+1' i +1

j=2 8 2K

P 2 2 2 i /2
[ 2 - max(l, 4 K 2u - (2K) 6 12 H2(6i+1,6i+)
B 2u BI

'/2But 6H 2(6,6) -0 as 6- 0. Consequently for small 6, uniformly over i

N
1 + i -)exp{- (.1 i) _ 2X(i))2 I

J=2 0 i+i' 2 2 J-1 j

B2u H (6 2 - (j-l) )/2
1 exp{- 3-2" 6

J=2

00

- exp{-2tnln2-(j-l)6 i+I}
j=2

0-2-< ((j - 1)n2) -2 <

j=2

independently of i. Consequently, for small 6

i=o i=o

Thus Z b is finite for small 6, and Eo b -b0 as 6-0. Consequently, (2.19)i=o i i=o i
is proven and then (2.18) follows. To finish the proof we have to show that it

is possible to choose B and B2 to satisfy conditions (2.32), (2.34), (2.38).

This is simple. For any B2 > 0 set BI(B 2 )= 2B2. This satisfies (2.38) independ-

ently of B. ThenBB 2
2 .  2.B 1 (B2 ) = 2B2. Consequently taking B2 small enough we get

both (2.32) and (2.34) satisfied. This completes the proof.

.. • %
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A

The following two examples are taken from Dudley (1973).

Example 2.1. Let {a k } be a sequence of positive numbers with a k +0. For

of2 2
fk=l,2,..., let C be a cube of dimension k and side 2a /k centered at 0.

k k

Let the cubes C lie in orthogonal subspaces. Let C = u C.
k k~l k'

Consider the origin xO = 0. Letting ak +0 slowly, we can make

SH HC () (6)-0 as slowly as desired, thus the integral (2.12) can diverge

for all 6 >0. Nevertheless, the isonormal process is continuous a.s. at x0 0.

We show that Theorem 2.1 works here.

For every fixed k and E

2ak k2N(Ck,e) < m k{k- ,l}

and for fixed 0<6 <6 ,>0 

E n(6l) 4a k  k 2 ".

(2.39) N0(613112 ) < N(C0 (6 ) 2 + k
0 1 2 k= I(jr 1

where
a k

-ak 
3,

n(s) max{k :- > s} .

Define also
ak 1/I

rn(s) :=max{k :k->s }

Both n(s) and m(s) increase to infinity as s+ 0. Define

n(s) 4ak k2
(2.40) H(st) : n( I (- ) +1].

kfl

We have to show that

s n(s) 4a 2 /2
(2.41) lim f{Zn( I (-kt)'}dt - 0.

s-0 0 k=l

The obvious relations Zn(x+y) i-n2x+n2y, x,y>l and (x+y) 112 x2 +y 2

yield that

.
. . . ...... 1 -.. .° . . ."o.. 1...-......... .............. .....

.. ,** .* %-* ., - , . ' , . . ..-.
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s n(s) 4a k2

(2.42) f{Zn[ X (I ) I } /2dt
0 k fl-I

s(s) 4 ak 2  1/ n(s) 4 ak k 2  /2t

5 f ( k2[I I/dt + (-f) dt + s(2n2) 1/

0 kfl 0 k--m(s)+l kt

Denote by II and 12 the first and second integrals in the right hand side of

(2.42). We are going to show that

lim II = lim I 2 =0.
s0 s+O 2

We have, for small s,

s r(s) 2 4 ak

I - f{ I [k Zn(- ) +n2}/2dt
0 k=l

s rn(s) 4a 1/2
< s(m(s)-n2) + f I k[Zn(-2)]

0 k-l

1/2 e (S) s 4a I 1 1s(m(s)Ln2)/2+ kn[s n (- -)] 2dt

k=l 0

1,4ai /

s(m(s)tn2)I2 r(s)(M(s) +1) "2s[tn(-aI1)/2

and this goes to zero as s -0 because r(s) -als 4 . Further, for every

re(s) < k 5 n(s)

kt 4 kak 4ka 4a2

4ak k2 4ak 
4ak  t I k I 4a 2

(2.43) (-) ] (ee) t < (ee) exp{
<- -) < ees't

where the first inequality in (2.43) follows from the fact that

1 1
x e

max it = e
x>O

and the second inequality follows from the fact that a /k -s. We conclude
k

that
'C

". .o- - O . . . . . . . . . .- . ..'. .° . " '° . - - ° ° % ° .. "- -.- -, % - .. .-. -. °o-..° .

• ,. , ,':,. .- .. . -.-.. ...--... -.. - • . . ..... •. . - -,- .... _- . - , . . -. - ,. - .,
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s 4a2

(2.44) 12_< f{Zn[n(s)exp( e'ts+l) dt
0

/2a/ s)+S
! s[Znn(s)] /2 + 2e aM(s)+1*s ft- *2°dt

0

s[Znn(s)] V2 + 4e- 1/ a (s)+

The first term in (2.44) converges to zero because n(s)<-s an(s), while

the second term converges to zero because rn(s) + - as s + 0. Therefore, the

conditions of Theorem 2.1 hold.

Remark 2.3. Note that the GC property of C follows. We have just proved

that the isonormal process is continuous at x0 = 0. Certainly, for any x0 E C

other than the origin, for any sufficiently small 6 > 0 the metric entropy

of C (6) is bounded by a logarithmic function of e, and so the integral
x0

(2.12) is finite. In this example, consequently, we have proved that C is

a GC class by proving that the isonormal process is continuous at the (only)

"difficult" point x0
= 0.

Example 2.2. Again, let {a } be a sequence of positive numbers with ak + 0.

Let

C = *a (tnn)-/'n a 2} u {0}, "

n orthonormal. Consider x = 0. If ak + 0 slowly (a = (ZnZnk)- '2 is slow

enough) then the integral (2.12) diverges for all 6> 0. Let us show that

Theorem 2.1 can be applied to this example as well. Set

2
a

M(s) :=min{n :- <s}.

Then, for any 0<61 <62'  , > 0

(2.45) N0(01,62,E) - [min(M(), M(61 ))- M(62)]+ + I.

or"
%,, " . , .P "
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This implies that

(2.46) N0 (626 22) - 2M(6 ).

Set

(2.47) H(s,t) : n2 + P-nM(s).

Then

s 1/2d4
fH(st) dt= s[en2 + ZnM(s)]

0

and we have to show that

2
lrms 2rnM(s) = 0.
S-O

But this is clear, since

2
aM(s)-I 

2tn(M(s)-l) >

so

M(s) < 2exp{s- 2 aM(s)_l }

and also M(s) +o as s +0.

Remark 2.4. Again, we have proved the GC property of C, since at any point

x 0 E C other than the origin the isonormal process cannot have a discontinuity.

* I-

I=
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Appendix

Theorem 1.1 is proven here. The idea of the proof is the same as that of

Marcus and Shepp (1971) in the case of Gaussian processes on [0,1].

Let C* be a countable dense subset of C. For any I cC, any E >0, define

) i there is an r >0 such that for every 6> 0 there,

A E(I) = are t I e C* n I and t 2 E C* such that d(tl,t ) <6

I and X(t 1 )Xt 2 )I > E+r.

Lemma A.l.

P(A (I)) = 0 or 1.

Proof of the lemma.

Let SlS2,... be a numeration of the points of C*. Then there exists a

sequence of orthonormal Gaussian variables Y1 ,Y2,... and real numbers

[aij} , }i-j, such that for each i

i
(A.1) X(s ) = aJYJ.

j=1

Let a -0 for j >i, and let for t 't2 E C* i and i denote the places of
ij 1 2 2

tI and t2 correspondingly in the fixed numeration of C*. Then

2 2 2(A.2) a (tl,t 2 ) = E[X(t1 ) -X(t 2)] = [ (a -a i)
j=l 11 2

Note that the covariance function of the process, R(s,t), is continuous

* on Cx C, since X(t) is a.s. continuous at each point of C. Then the function

a 2(s,t) is also continuous on Cx C, and, because of compactness, it is

uniformly continuous. Consequently, for every 0 > 0 there is a n = n(O)> 0 such

2 2that d(t1 ,t2) -<n implies that a (tl,t 2)-<8 2 . If also tl,t2 E C*, then (A.2)

implies that lai -a21 J2 -0 for every J. Let us rewrite the event A (I) as

2%
% %
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there is an r >0 such that for every 6 >0 there

A (I jare tI E C* n I and t 2 E C* such that d(tl9t 2 ) <

and I Y.(w)(a -a )I > E+r.
J=l 1

We claim that A (I) is a tail event for the sequence Y1,Y2 ,. . . .  It is suf-

ficient to show that if w and w are such that for some finite m

Yn(WI) =Yn(W2) for all n>m, then w I EA (I) implies w 2 EA (I).

Suppose the contrary, i.e. EI EA (I) and w 2 d A (I). Then for some positive

r(w1 ), for all sufficiently small 6 >0 there are tI E C* n I and t 2 E C* such that

d(tl,t2 ) <6 while

j I

2 i~ 1  21

(Here, as before, i1 and i2 denote the places of t1 and t2 respectively in

the fixed numeration of C*). We conclude (recall that all sums have finite

numbers of terms) that

r(wl) < I Y(W)(a -- aI Y (W)(a a)
~l .~aij) I j]  -i

j jl - 1 'li 11 J=l 12 li 21

(A.3) 5 IY (W I)(a -a ) - ij (W2)(all - a ) 

m

j (l il( 1 j i 2  I i 2 ip ii
:" = I [ (Yj(w 1 )-Y 1 (w2))(a l l 

- ai 4j l .

The inequality (A.3), however, cannot hold for all positive 6, since its

left-hand side is positive, while the right-hand side goes to zero as 6 -0.

This contradiction shows that A (I) is a tail event. Consequently, Kolmogorov's

zero-one law implies that P(A (I))=0 or I.

S.P 'r

.. . .* *. * ... *9.

%,
*5S.* -I- . **5*~,*

',. .. ,, .- '.." . . .- ,'. '. '. • •.-. .• ." - -. . .. - ' . " ".s "- '._' "- "--...... .
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We return now to the proof of Theorem 1.1. For any I cC, any e >0 define

B () - for any (>0 there are t1 EC*nI and t2EC* such that}
, f wd(t1 ,t2 ) <6 and IX(tI) - X(t2 )1, >C.

Then B (I) cA /2(I). If X(t) is not sample continuous then P(B E(C)) >0 for

some E>0. Then P(A 5 (C))>0 for some E*> 0. This implies that P(A 5 (C))= I.

Let do = sup t2 ECd(tl,t2 < -. The compactness of C implies that we can
t1 ,(

cover it by a finite number of compact sets C 1C)l) C of diameter at
, . k 1

most d 0/2 each. Since

(A.4) A (C) = U A (C I)

we conclude, that for some il, 1!51 1 <-el, P(A ,(C lI))> 0. Thus

ilP ) W i nto compact subsets of diameter at

most d0 , and so on. We obtain a sequence of nested compact non-empty

sets

C = C (0 ) > C(l ) > C( 2 ) >..

1 111 2

with the following two properties: for each k=1,2,... P(AC*(C(k)))=l

and the diameter of C~k is at most d0/2k. This sequence has to converge to
ik

a point t E C. Then, by the definition of A (I)

P(lim X(t) - lim X(t) - *) _> P( n A.(C .
- t-tM t-too =k

tEC* tEC*

This contradicts the assumption that X(t) is a.s. continuous at too. This con-

tradiction shows that X(t) is sample continuous.

""""
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